ABSTRACT: In this paper, purified single-walled carbon naotubes (SWCNTs) with three different diameters were synthesized using a floating catalytic chemical vapor deposition method with ethanol as carbon feedstock, ferrocene as catalyst, and thiophene as growth promoter. The thermal-oxidative stability of different-diameter SWCNTs was studied by using thermal analysis (TG, DTA), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. The results indicate that small diameter SWCNTs (∼1
nm) are less stable and burn at lower temperature (610
°C), however, the larger diameter SWCNTs (∼5
nm) survive after burning at higher temperature (685
°C), the oxidation rate varies inversely with the tube diameter of SWCNTs, which may be concluded that the higher oxidation-resistant temperature of larger diameter SWCNTs can be attributed to the lower curvature-induced strain by rolling the planar graphene sheet for the larger diameter, so small tubes will become thermodynamically unstable.