144.<Journal of Colloid and Interface Science>Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity,2021,10.1016/j.jcis.2021.04.051

作者: 时间:2021-05-28 点击数:

Abstract

Capacitive deionization (CDI) is considered as a promising desalination technology due to its low energy consumption and no two-second pollution. But the development of traditional CDI is limited by its two drawbacks, which are low deionization capacity and unavoidable parasitic reactions. Hybrid capacitive deionization (HCDI), which is composed of a faradic electrode and an electrical-double-layer electrode, effectively solves the above problem. Herein, we report a typical NASICON material Na3(VO)2(PO4)2F and modify it with rGO, then apply it in HCDI firstly and receive a superior desalination performance. Five samples are prepared by adding different contents GO solution and we choose the best one (NVOPF-4) with the lowest resistance for the desalination tests according to electrochemical performance. The result of desalination shows a high desalination capacity of 175.94 mg·g−1, low energy consumption of 0.35 kWh·kg-NaCl−1, and the energy recovery is 20% at a current density of 25 mg·g−1. NVOPF@rGO displays a promising ability for desalination in capacitive deionization, further confirming NASICON be a suitable material type for HCDI electrode materials.

Keywords

Na3(VO)2(PO4)2F nanocuboid;
Graphene;
Faradic electrode;
NASICON;
Desalination

版权所有:Copyright 2018. 环境功能材料研究中心 All rights reserved.

地址:上海市杨浦区四平路1239号 邮编:200092