ABSTRACT:Magnetic iron oxide/graphene oxide (MGO) with high iron loading (51 wt%) has been successfully synthesized using the co-precipitation method, and then used as adsorbents for the removal of arsenate and arsenite from aqueous solutions. The resulting MGO possesses desirable magnetic properties (12.8 emu g1) and excellent adsorption properties for the removal of As(III)and As(IV) with significantly enhanced adsorption capacities of 54.18 mg g1 and 26.76 mg g1, respectively. These values are much higher than those of other GO-based composites reported previously. The kinetic, equilibrium and environmental effects (pH, ionic strength, coexist anion) of MGO were obtained experimentally. A synchrotron-based X-ray fluorescent microprobe was used to generate elemental distribution maps of adsorbents; the results suggest that As(V) became preferentially associated with iron oxides during the adsorption process, and that the distribution of Fe is directly correlated with the distribution of As.